New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carbazole scaffold have been developed. The markers in complex with Eu3+ ions possess stability in the aqueous phase, intense and prolonged luminescence (τ 550 - 570 μs) with characteristic emission maxima in the region of 615 nm and excitation wavelengths in the region of 380 - 390 nm, which distinguishes them from most of the analogs used. In the study of marker conjugation with streptavidin, a reagent containing 4 - 5 europium labeling complexes based on spacer-containing carbazole tetraketone was obtained. The marker-doped silicate nanoparticles exhibit intense and long-lived luminescence in the characteristic region.
Dmitry E. PugachevGeorgy V. ZatonskyTatyana S. KostryukovaAnna G. ShubinaNikolay V. Vasiliev
The europium heptadentate coordinatively unsaturated (Eu(III)) and the terbium (Tb(III)) 1,4,7,10-tetraazacyclododecane (cyclen) complexes 1 and 2 were used in conjunction with ligand 3 (1,3,5-benzene-trisethynylbenzoate) to form the supramolecular self-assembly structures 4 and 5;this being investigated in both the solid and the solution state. The resulting self-assemblies gave rise to metal centered emission (both in the solid and solution) upon excitation of 3, confirming its role as a sensitizing antenna. Drop-cased examples of ligand 3, and the solid forms of 4 and 5, formed from both organic and mixture of organic-aqueous solutions, were analyzed using Scanning Electron Microscopy, which showed significant changes in morphology;the ligand giving rise to one dimensional structures, while both 4 and 5 formed amorphous materials that were highly dense solid networks containing nanoporous features. The surface area (216 and 119 m2·g^-1 for 4 and 5 respectively) and the ability of these porous materials to capture and store gases such as N2 investigated at 77 K. The self-assembly formation was also investigated in diluted solution by monitoring the various photophysical properties of 3–5. This demonstrated that the most stable structures were that consisting of a single antennae 3 and three complexes of 1 or 2 (e.g., 4 and 5) in solution. By monitoring the excited state lifetimes of the Eu(III) and Tb(III) ions in H2O and D2O respectively, we showed that their hydration states (the q-value) changed from -2 to 0, upon formation of the assemblies, indicating that the three benzoates of 3 coordinated directly to the each of the three lanthanide centers. Finally we demonstrate that this hierarchically porous materials can be used for the sensing of organic solvents as the emission is highly depended on the solvent environment;the lanthanide emission being quenched in the presence of acetonitrile and THF, but greatly enhanced in the presence of methanol.
In this study Cu2++Eu3+ co-doped ZnO(ZnO/Cu2++Eu3+) solid solution powders were synthesized by solution combustion method using as oxidant agent zinc nitrate hexahydrate and as fuel urea;the Cu2+ concentrations were 0, 1, 2, 3, 10, and 20 %Wt;the Eu3+ ion concentration was fixed in 3%Wt. The samples after were annealed at 900°C by 20 h in air. The structural results showed the largely presence of a wurtzite solid solution of Cu2++Eu3+doped ZnO, at high Cu2+ doping CuO and Eu2CuO4 phases are also present. Morphological properties were analyzed using scanning electron microscopy (SEM) technique. However it is important to remark that the Cu2+ ions suppress the Eu3+ ion photoluminescence (PL) by means of an overlap mechanism between Cu2+ absorption band and Eu3+emission band (e.g. 5D0→7F2) of the Eu3+ emission spectra.
S. López-RomeroM. J. Quiroz JiménezM. García-Hipólito
N,N-dibutyldiglycol amic acid (HL1) and N,N-dioctyldiglycol nmic acid (HLu) were synthesized and characterized by conventional spectroscopic methods. These molecules were examined as extractants for extraction-separation of La(Ⅲ), Eu(Ⅲ) and Er(Ⅲ), as representative ions of light, middle and heavy rare earths, from aqueous chloride solutions. The analysis of the extraction equilibria revealed that the extracted species of lanthanum and europium ions by both of the extractants had a 1:3 metal to ligand ratio It was suggested that erbium ions were extracted into the organic phase via the formation ofEr(LIor Ⅱ)2Cl complexes. The effect of the organic diluents on the extraction-separation efficiency of the studied rare earths by HLI and HLⅡ was investigated by comparing the results obtained in dichloromethane and carbon tetrachloride. Regardless to the diluent used, the order of selectivity presented by the investigated extractants was Er(Ⅲ)〉Eu(Ⅲ)〉La(Ⅲ). It is noteworthy that, a significant enhancement in separation of the studied rare earths by the extractants was achieved in their competitive extraction experiments with respect to that obtained in single component extraction experiments. Applicability of the extractants for the removal of rare earth ions from spent Ni-MH batteries was tested by removal ofLa(Ⅲ), Eu(Ⅲ) and Er(Ⅲ) ions from simulated leach solution of such batteries.
Reyhaneh Safarbalimohammad reza yaftianabbasali zamani