Some results on the molecular-beam epitaxial growth of HgCdTe focusing on the requirements of the 3rd generation infrared focal plane arrays are described. Good uniformity is observed over 75mm HgCdTe epilayers,and the deviation in cutoff wavelength is within 0. 1μm at 80K. A variety of surface defects are observed and the formation mechanism is discussed. The average density of surface defects in 75mm HgCdTe epiluyers is found to be less than 300cm^-2. It is found that the surface sticking coefficient of As during HgCdTe growth is very low and is sensitive to growth temperature, being only -1 × 10^-4 at 170℃. The activation energy of As in HgCdTe was determined to be 19.5meV,which decreases as (Na - Nd)^1/3 with a slope of 3.1 × 10^-5 meV · cm. The diffusion coefficients of As in HgCdTe of 1.0 ± 0,9 × 10^-16,8 ± 3 × 10^- is, and 1.5 ± 0.9 × 10^-13 cm^2/s are obtained at temperatures of 240,380, and 440℃, respectively under Hg-saturated pressure. The MBE-grown HgCdTe is incorporated into FPA fabrications,and the preliminary results are presented.
报道了用 MBE的方法 ,在 Zn Cd Te衬底上制备 Hg Cd Te薄膜的位错密度研究结果。研究发现Hg Cd Te材料的位错密度与 Zn Cd Te衬底的表面晶体损伤、Hg Cd Te生长条件以及材料组分密切相关。通过衬底制备以及生长条件的优化 ,在 Zn Cd Te衬底上生长的长波 Hg Cd Te材料 EPD平均值达到 4.2× 1 0 5cm- 2 ,标准差为 3 .5× 1 0 5cm- 2 ,接近 Zn Cd Te衬底的位错极限。可重复性良好 ,材料位错合格率为 73 .7%。可以满足高性能Hg Cd