Replacing fossil fuels with fuel cells is a feasible way to reduce global energy shortages and environmental pollution.However,the oxygen reduction reaction(ORR)at the cathode has sluggish kinetics,which limits the development of fuel cells.It is significant to develop catalysts with high catalytic activity of ORR.The single-atom catalysts(SACs)of Pt supported on heteroatom-doped graphene are potential candidates for ORR.Here we studied the SACs of Pt with different heteroatoms doping and screened out Pt-C_(4) and Pt-C_(3)O_(1) structures with only 0.13 V overpotential for ORR.Meanwhile,it is found that B atoms doping could weaken the adsorption capacity of Pt,while N or O atoms doping could enhance it.This regularity was verified on Fe SACs.Through the electronic interaction analysis between Pt and adsorbate,we explained the mechanism of this regularity and further proposed a new descriptor named corrected d-band center(ε_(d-corr))to describe it.This descriptor is an appropriate reflection of the number of free electrons of the SACs,which could evaluate its adsorption capacity.Our work provides a purposeful regulatory strategy for the design of ORR catalysts.
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.
Riccardo BrandieleAndrea GuadagniniMattia ParnigottoFederico PiniVito CovielloDenis BadoccoPaolo PastoreGian Andrea RizziAndrea VittadiniDaniel ForrerVincenzo AmendolaChristian Durante
It is highly desirable to design efficient and stable hydrogen evolution reaction(HER)and oxygen evolution/reduction reaction(OER/ORR)electrocatalysts for the development of renewable energy technologies.Herein,density functional theory(DFT)calculations were conducted to systematically investigate a series of TMN_(x)O_(4-x)-HTT(TM=Fe,Co,Ni,Ru,Rh,Pd,Ir and Pt;HTT=hexahydroxy tetraazanaphthotetraphene)analogs of two-dimensional(2D)conductive metal-organic frameworks(MOFs)as potential electrocatalysts for the HER,OER and ORR.The thermodynamic and electrochemical stability simulations suggest that these designed catalysts are stable.Remarkably,CoO_(4)-HTT,RhN_(3)O_(1)-HTT and IrN3O1-HTT are predicted to be the most promising catalysts for the HER,OER and ORR,respectively,surpassing the catalytic activity of corresponding benchmark catalysts.The volcano plots were established based on the scaling relationship of adsorption Gibbs free energy of intermediates.The results reveal that regulating combinations of metal active centers and local coordination environments could effectively balance the interaction strength between intermediates and catalysts,thus achieving optimal catalytic activity.Our findings not only opt for the promising HER/OER/ORR electrocatalysts but also guide the design of efficient electrocatalysts based on 2D MOFs materials.
Yanan ZhouLi ShengLanlan ChenWenhui ZhaoWenhua ZhangJinlong Yang
Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.