Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426.
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
Owing to the outstanding properties provided by nontrivial band topology,topological phases of matter are considered as a promising platform towards low-dissipation electronics,efficient spin-charge conversion,and topological quantum computation.Achieving ferroelectricity in topological materials enables the non-volatile control of the quantum states,which could greatly facilitate topological electronic research.However,ferroelectricity is generally incompatible with systems featuring metallicity due to the screening effect of free carriers.In this study,we report the observation of memristive switching based on the ferroelectric surface state of a topological semimetal(TaSe_(4))2I.We find that the surface state of(TaSe_(4))2I presents out-of-plane ferroelectric polarization due to surface reconstruction.With the combination of ferroelectric surface and charge-density-wave-gapped bulk states,an electric-switchable barrier height can be achieved in(TaSe_(4))2I-metal contact.By employing a multi-terminal-grounding design,we manage to construct a prototype ferroelectric memristor based on(TaSe_(4))2I with on/off ratio up to 103,endurance over 103 cycles,and good retention characteristics.The origin of the ferroelectric surface state is further investigated by first-principles calculations,which reveal an interplay between ferroelectricity and band topology.The emergence of ferroelectricity in(TaSe_(4))2I not only demonstrates it as a rare but essential case of ferroelectric topological materials,but also opens new routes towards the implementation of topological materials in functional electronic devices.
This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity.
The Yellow River Basin (YRB) is a vital ecological zone in China owing to its sensitive and fragile environment.Under the long-term influence of climate changes and artificial factors,the relationship between precipitation,vegetation,and surface water in the YRB has changed drastically,ultimately affecting the water resources and environmental management.Therefore,we applied multivariate statistical analysis to investigate the precipitation,normalized difference vegetation index (NDVI),and surface water changes in the YRB from 2000to 2021.Furthermore,we attempted to clarify the ecological effects of precipitation by explaining the relationship between precipitation and vegetation in terms of the time-lag relationship using the Integrated Multi-satellite Retrievals for Global Precipitation Measurement algorithm,Moderate Resolution Imaging Spectroradiometer,and hydrological databases.Precipitation,vegetation,and area of surface water in the YRB showed increasing trends from 2000–2021 (e.g.,7.215 mm/yr,0.004 NDVI/yr,and 0.932 km^(2)/yr,respectively).The water level in the upper reaches of the YRB showed a downward trend,whereas that in the middle and lower reaches exhibited an upward trend.Changes in precipitation had a positive effect on vegetation and surface water in the YRB,with correlation coefficients of 0.63 and0.51,respectively.The responses of NDVI and surface water elevation to precipitation were heterogeneous and delayed,with the majority showing a lag time of approximately≤16 days.Moreover,the lag times of Longyangxia Lake and Ngoring-Co Lake were 0 and 8 days,respectively.We showed that precipitation variability can effectively explain vegetation improvement and increases in surface water elevation,while providing a proven scenario for predicting the surface water and vegetation productivity under the influence of climate change.