Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.