Non-rigid point matching has received more and more attention.Recently,many works have been developed to discover global relationships in the point set which is treated as an instance of a joint distribution.However,the local relationship among neighboring points is more effective under non-rigid transformations.Thus,a new algorithm taking advantage of shape context and relaxation labeling technique,called SC-RL,is proposed for non-rigid point matching.It is a strategy that joints estimation for correspondences as well as the transformation.In this work,correspondence assignment is treated as a soft-assign process in which the matching probability is updated by relaxation labeling technique with a newly defined compatibility coefficient.The compatibility coefficient is one or zero depending on whether neighboring points preserving their relative position in a local coordinate system.The comparative analysis has been performed against four state-of-the-art algorithms including SC,ICP,TPS-RPM and RPM-LNS,and the results denote that SC-RL performs better in the presence of deformations,outliers and noise.
Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image.