A real case study for the transformation of Tropical Storm (TS) Haima (2004) into an extratropical cyclone (EC) is carried out numerically since,after landfall,Haima (2004) (as an EC) brought severe weather to a large area (from the south to the north) in China during 13-16 September 2004.With the linear diagnostic model (derived in a previous study) for the tangentially-averaged radial-vertical circulation within vortices moving on the spherical Earth,Haima's (2004) life cycle is reconstructed noticeably well.Therefore,the major contributor could be identified confidently for Haima's (2004) extratropical transition based on the diagnostic model outputs.The quantitative comparison shows that up to a 90% contribution to the innerregion updraft and a 55% contribution to the upper-layer outflow come from latent heating during Haima's (2004) TS stage.Up to a 90% contribution to the inner-region updraft and nearly a 100% contribution to the upper-layer outflow come from the upper-layer eddy angular momentum advection (EAMA) during Haima's (2004) EC stage.Representing the asymmetric structure of the storm,the predominantly positive contribution of the upper-layer EAMA to Haima's (2004) transformation is closely associated with the Sshaped westerlies in the upper layer with two jets.One jet in the cyclonic-curvature area carries cyclonic angular momentum into the storm,and the other jet in the anticyclonic-curvature area carries anticyclonic angular momentum out of the storm.Consequently,the newly-increased cyclonic tangential wind is deflected by the Coriolis force to the right to form the upper-layer outflow accompanied by the central-area rising motion,leading to Haima's (2004) extratropical transition after its landfall.
Global climate models predict that the increasing Amazoniandeforestation rates cause rising tempera tures (increases of 1.8℃ to 8℃ under different conditions) and Amazonian drying over the 21st century. Observations in the 20th century also show that over the warmer continent and the nearby western South At lantic Ocean, the lowerlayer equatorial westerly wind (LLEWW) strengthens with the initiation of tropical cyclones (TCs). The warmercontinentrelated LLEWW can result from the Coriolisforceinduced deflection of the crossequatorial flow (similar to the wellknown heatisland effect on sea breeze) driven by the enhanced landsea contrast between the warmer urbanized continents and relatively cold oceans. This study focuses on the processes relating the warmercontinentrelated LLEWW to the TC initiation and demonstrates that the LLEWW embedded in trade easterlies can directly initiate TCs by creating cyclonic wind shears and forming the intertropical convergence zone. In addition to this direct effect, the LLEWW combined with the rotating Earth can boost additional updraft vapor over the high seasurface temperature region (factor 1), facilitating a surfacetomidtroposphere moist layer (factor 2) and convective instability (factor 3) followed by diabatic processes. According to previous studies, the diabatic heating in a finite equatorial region also activates TCs (factor 4) on each side of the Equator with weak vertical shear (factor 5). Factors 1–5 are favorable conditions for the initiation of severe TCs. Statistical analyses show that the earliest signal of sustained LLEWW not only leads the earliest signal of sustained tropical depression by 3 days but also explains a higher percentage of total variance.