Using density functional theory and polarizable continuum models, we study the Raman spectra of aqueous peroxynitric acid. The calculated results indicate that the solvent effect has significant influence on the electric dipole transition moments between the ground and excited electronic state and Raman polarizabilities. The theoretical Raman spectra agree well with the experimental results. From the experimental depolarization ratio, we can conclude that peroxynitric acid is not a plane molecule. We also find that the hydrogen bond can enhance IR intensity of hydroxyl group by several times.
The lowest energy structures of peroxynitric acid have been studied with B3LYP/6-311+ G(2d,2p) method. The potential energy surfaces (PES) along the O-N and O-O bonds have been scanned at CCSD(T)/aug-cc-pVDZ level, respectively. The calculated results show that on the O-N PES, the O3-N4 bond length of the loose transition state is 2.82A^° and the corresponding energy barrier is 25.6 kcal/mol, while on the O-O PES, the loose transition state with of O2-O3 bond length of 2.35A^° has the energy barrier of 37.4 kcal/mol. Thus the primary reaction path for peroxynitric acid is the dissociation into HO2 and NO2.