We investigate the contact process on random graphs generated from the configuration model for scale-free complex networks with the power law exponent β E (2, 3]. Using the neighborhood expansion method, we show that, with positive probability, any disease with an infection rate λ 〉 0 can survive for exponential time in the number of vertices of the graph. This strongly supports the view that stochastic scale-free networks are remarkably different from traditional regular graphs, such as, Z^d and classical Erdos-Renyi random graphs.
In this article, we discuss several properties of the basic contact process on hexagonal lattice H, showing that it behaves quite similar to the process on d-dimensional lattice Zd in many aspects. Firstly, we construct a coupling between the contact process on hexagonal lattice and the oriented percolation, and prove an equivalent finite space-time condition for the survival of the process. Secondly, we show the complete convergence theorem and the polynomial growth hold for the contact process on hexagonal lattice. Finally, we prove exponential bounds in the supercritical case and exponential decay rates in the subcritical case of the process.
We prove that two independent continuous-time simple random walks on the infinite open cluster of a Bernoulli bond percolation in the lattice Z2 meet each other infinitely many times.An application to the voter model is also discussed.
Let N = (G, c) be a random electrical network obtained by assigning a certain resistance for each edge in a random graph G ∈ G(n, p) and the potentials on the boundary vertices. In this paper, we prove that with high probability the potential distribution of all vertices of G is very close to a constant.
This paper develops a sequential fair Stackelberg auction model in which each of the two risk-seeking insiders has an equal chance to be a leader or follower at each auction stage. The authors establish the existence, uniqueness of sequential fair Stackelberg equilibria (in short, FSE) when both insiders adopt linear strategies, and find that at the sequential equilibria such two insiders compete aggressively that cause the liquidity of market to drop, the information to be revealed and the profit to go down very rapidly while the trading intensity goes substantially high. Furthermore, the authors also give continuous versions of corresponding parameters in the sequential FSE in closed forms, as the time interval between auctions approaches to zero. It shows that such parameters go down or up approximately exponentially and all of the liquidity of market, information and profit become zero while the trading intensity goes to infinity. Some numerical simulations about the sequential FSE are also illustrated.
We prove that a C2 unimodal interval map with critical order not greater than 2 has the decay of geometry property, by showing that all the cross-ratio estimates needed in the previous proof for the C3 case remain true.
SHEN WeiXiao1,2 1 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China