The behaviors of lead zirconate titanate (PZT) deposited as the dielectric for high-voltage devices are investigated experimentally and theoretically. The devices demonstrate not only high breakdown voltages above 350 V, but also excellent memory behaviors. A drain current–gate voltage (ID-VG) memory window of about 2.2 V is obtained at the sweep voltages of ±10 V for the 350-V laterally diffused metal oxide semiconductor (LDMOS). The retention time of about 270 s is recorded for the LDMOS through a controlled ID-VG measurement. The LDMOS with memory behaviors has potential to be applied in future power conversion circuits to boost the performance of the energy conversion system.