In this paper, we obtain a properly posed set of nodes for interpolation on a sphere. Moreover it is applied to construct properly posed set of nodes for Lagrange interpolation on the trivariate polynomial space of total degree n.
The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geometrically, and gives sufficient and necessary conditions for coincidence of two rational NURBS curves in non-degeneracy case.
The mechanical background of the bivariate spline space of degree 2 and smoothness 1 on rectangular partition is presented constructively. Making use of mechanical analysis method, by acting couples along the interior edges with suitable evaluations, the deflection surface is divided into piecewise form, therefore, the relation between a class of bivariate splines on rectangular partition and the pure bending of thin plate is established. In addition, the interpretation of smoothing cofactor and conformality condition from the mechanical point of view is given. Furthermore, by introducing twisting moments, the mechanical background of any spline belong to the above space is set up.
In this paper, the dimension of the spaces of bivariate spline with degree less that 2r and smoothness order r on the Morgan-Scott triangulation is considered. The concept of the instability degree in the dimension of spaces of bivariate spline is presented. The results in the paper make us conjecture the instability degree in the dimension of spaces of bivariate spline is infinity.
Zhiqiang Xu and Renhong Wang (Dalian University of Technology, China)
A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function.In this paper, a conjecture on triangulation is confirmed. The relation between the piecewise linear algebraiccurve and four-color conjecture is also presented. By Morgan-Scott triangulation, we will show the instabilityof Bezout number of piecewise algebraic curves. By using the combinatorial optimization method, an upperbound of the Bezout number defined as the maximum finite number of intersection points of two piecewisealgebraic curves is presented.