建立了某船用柴油机喷嘴内部流动的三维CFD计算模型,用计算流体力学软件AN SY S-FLOTRAN对喷嘴内的三维流动进行了模拟分析,得到了喷嘴内部的液压分布,然后将该结果作为边界条件对喷嘴的液力负荷进行了三维有限元分析.结果表明,在高压液力负荷作用下,喷嘴头部的应力梯度较大,喷孔进口内侧上端应力值最大,且存在应力集中.在喷孔进口处倒一半径为0.05 mm的圆角,再次对喷嘴的液力负荷进行分析,发现喷孔进口内侧上端的应力值降低了34%,应力集中也得到了有效缓解.
分析了电控喷油器的工作原理,确定了喷油器的物理模型、数学模型及边界条件,提出了一个影响仿真精度的关键参数——流量系数的计算方法,建立了喷油器的s im u link仿真模块并进行了仿真.通过仿真发现了喷油器结构尺寸参数对其动态响应的影响关系,确定了影响喷油器动态响应的关键参数,即控制室进出油量孔直径.建立了高压共轨电控喷油器液力响应特性测试试验台,验证了仿真结果的正确性.
根据电控喷油器各部件的结构特点、耦合关系及物理性质,建立了电控喷油器电磁阀驱动、电磁阀、液力、机械系统耦合的数学模型,完成了仿真计算并获得了各因素对电控喷油器性能影响的空间图谱;系统地研究了电控喷油器结构参数对喷油器动态响应的影响。以仿真结果为基础,以系统的响应和经济性为目标,建立了系统的多元回归方程。通过多目标规划,对系统的结构参数进行了优化。利用分析结果,设计了相应的零部件。在喷油器动态特性测试台架上,对经过优化设计的喷油器进行了动态响应特性等测试。测试结果与仿真结果有较好的一致性;喷油器针阀开启和关闭响应时间均可达0.2 m s,喷油规律波形与控制脉冲波形基本一致。