近年来,高时空分辨率的全球导航卫星系统(GNSS)观测信号已成为电离层研究的重要资源.利用GNSS研究电离层,需首先将观测资料转换成包含电离层信息的可观测量(Ionospheric Observables,称之为"电离层观测值").目前,最常用的电离层观测值一般采用联合无几何影响组合的码和相位观测,利用相位平滑伪距方法计算得到(称之为"平滑电离层观测值"),但该过程易受平滑弧段长度和与测站有关的误差(如多路径效应和观测噪声)的影响.本文提出利用精密单点定位(Precise Point Positioning,PPP)提取电离层观测值(称之为"PPP电离层观测值",形式与平滑电离层观测值相同).与相位平滑伪距相比,IGS发布的卫星轨道、钟差产品可被PPP合理利用,从而有效减少了待估参数,使得电离层观测值的估计精度得到改善.基于短基线和零基线实验,通过考察两类电离层观测值的站间单差结果在各卫星弧段间的离散程度,验证了PPP电离层观测值的可靠性:以某两天的短基线实验结果为例,与测站有关的误差对PPP电离层观测值的影响分别为对平滑电离层观测值影响的44.4%和35.7%,表明PPP电离层观测值更利于高精度电离层建模、预报等研究.
联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于与电离层有关的研究。然而,平滑伪距电离层观测值易受平滑弧段长度和与测站有关的误差影响。提出一种新算法:利用非组合精密单点定位技术(precise point positioning,PPP)计算电离层观测值(称之为"PPP电离层观测值"),进而估计sTEC和站星DCB。基于短基线试验,先用一台接收机按上述两种方法估计sTEC,用于改正另一接收机观测值的电离层延迟以实施单频PPP,结果表明,利用PPP电离层观测值得到的sTEC精度较高,定位结果的可靠性较强。随后,选取全球分布的8个IGS(internationalGNSS service)连续跟踪站2009年1月内某四天的观测数据,利用上述两种电离层观测值计算所有卫星的DCB,并将计算结果与CODE发布的月平均值进行比较,其中,平滑伪距电离层观测值的卫星DCB估值与CODE(Centre for Orbit Deter mination in Europe)发布值的差别较大,部分卫星甚至可达0.2~0.3 ns,而PPP电离层观测值而言,绝大多数卫星对应的差异均在0.1 ns以内。
During the period when a GPS satellite,the Earth and the Sun are approximately collinear,the phenomenon of eclipsing the satellite occurs,when the satellite yaw attitude deviates from its nominal case,i.e. the body X-axis cannot point towards the Sun for Block II&IIA or away from it for Block IIR satellites. The yaw attitude of the eclipsing satellites has a significant influence on both the satellite clock estimation at each International GNSS Service (IGS) Analysis Center (AC) and for users of the precise point positioning (PPP) implementations. It is known that,during the eclipsing periods,inconsistent yaw attitude models among the ACs will contribute to the errors of the IGS combined clock products. As for the PPP user,the influence of the eclipsing satellite is two-fold. First,as the satellite clocks are always kept fixed during PPP implementation,the above-mentioned problematic IGS clocks will inevitably be passed on to the PPP estimates. Second,the improper yaw attitude modeling of the eclipsing satellite will cause a correction bias exceeding 1 dm for the two kinds of attitude-related systematic errors,namely the phase wind-up and satellite antenna phase center offset,which will further deteriorate the accuracy of the PPP solutions. A yaw attitude model is introduced in this paper with the aim of improving the reliability of PPP solutions during the satellite eclipsing period.