Matsushita, Takahashi[4] proved a strong convergence theorem for relatively nonex- pansive mappings in a Banach space by using the hybrid method (CQ method) in mathematical programming. The purpose of this paper is to modify the hybrid method of Matsushita, Taka- hashi by monotone CQ method, and to prove strong convergence theorems for weak relatively nonexpansive mappings and maximal monotone operators in Banach spaces. The convergence rate of monotone CQ method is faster than the hybrid method of Matsushi...
In this paper, two iterative schemes for approximating common element of the set of zero points of maximal monotone operators and the set of fixed points of a kind of generalized nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Two strong convergence theorems are obtained and their applications on finding the minimizer of a kind of convex functional are discussed, which extend some previous work.
The purpose of this article is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-φ-asymptotically nonexpansive mappings.Its results hold in reflexive,strictly convex,smooth Banach spaces with the property(K).The results of this paper improve and extend recent some relative results.