Tissue elasticity and viscosity are always associated with pathological changes.As a new imaging method,ultrasound vibro-acoustic imaging is developed for quantitatively measuring tissue elasticity and viscosity which have important significance in early diagnosis of cancer.This paper developed an ultrasound vibro-acoustic imaging research platform mainly consisting of excitation part and detection part.The excitation transducer was focused at one location within the medium to generate harmonic vibration and shear wave propagation,and the detection transducer was applied to detect shear wave at other locations along shear wave propagation path using pulse-echo method.The received echoes were amplified,filtered,digitized and then processed by Kalman filter to estimate the vibration phase.According to the phase changes between different propagation locations,we estimated the shear wave speed,and then used it to calculate the tissue elasticity and viscosity.Preliminary phantom experiments based on this platform show results of phantom elasticity and viscosity close to literature values.Upcoming experiments are now in progress to obtain quantitative elasticity and viscosity in vitro tissue.
YI WANGSIPING CHENTIANFU WANGTING ZHOUQIAOLIANG LIYI ZHENGXIN CHEN