已有的机器证明方法在处理一些涉及大规模符号运算的几何问题时,常因算法复杂度过高或机器能力的限制,有时并不能在合理时间内实现可读机器证明.故提出了复数法这一新的几何定理机器证明算法,并选用符号计算功能较为强大的软件Mathematica创建了新证明器CNMP(complex number method prover).新提出的复数法能有效地解决构造型几何命题,对用于测试与评价几何定理证明器性能的综合性平台TGTP(thousands of geometric problems for geometric theorem provers)上的180个几何问题的实验结果表明,CNMP的解题能力与运行效率均令人满意.尤其是对于一些具有相当难度的几何定理,如五圆定理、Morley定理、Lemoine圆定理、Thebault定理、Brocard圆定理等,CNMP均能在短时间内给出可读机器证明.