With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As the sat-ellite-based passive microwave remote sensor, the Advanced Microwave Scanning Radiometer-Earth Observing Sys-tem (AMSR-E) loaded on NASA's (National Aeronautics and Space Administration of USA) Aqua satellite has been popularly used in the field of microwave observation. The Microwave Radiation Imager (MWRI) loaded on the Chi-nese FengYun-3A (FY-3A) satellite is an AMSR-E-like conical scanning microwave sensor, but there are few reports about MWRI data. This paper firstly proposed an optimal spatial position matching algorithm from rough to exact for the position matching between AMSR-E and MWRI data, then taking Northeast China as an example, comparatively analyzed the microwave brightness temperature data derived from AMSR-E and MWRI. The results show that when the antenna footprints of the two sensors are filled with either full water, or full land, or mixed land and water with ap-proximate proportion, the errors of brightness temperature between AMSR-E and MWRI are usually in the range from -10 K to +10 K. In general, the residual values of brightness temperature between the two microwave sensors with the same spatial resolution are in the range of ±3 K. Because the spatial resolution of AMSR-E is three times as high as that of MWRI, the results indicate that the quality of MWRI data is better. The research can provide useful information for the MWRI data application and microwave unmixing method in the future.
Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.