With the rise of environmentalism in China, great efforts have been devoted to environmental protec- tion over the past several decades. Compared with urban environmental protection, rural environmental protection has not been attached enough importance in China due to the dual-track structure of socio-economic development. As a result, rural China is shouldering disproportionally heavy environmental burdens partly because of the differences and biases between urban and rural environmental protection seen in environmental policies, environ- mental rights and interests, environmental protection investment, and the environmental protection awareness of people. To eliminate the gap between rural and urban environmental protection, and achieve the goal of "balanced urban-rural environmental protection" (BUREP), government should consider mapping out proper policies and strategies. In this paper we put forward an innovative strategy of BUREP against the background of China's urban-rural environmental protection. First, we review the current status of rural environmental protection status and its challenges compared with urban environ- mental protection in China. Secondly, we analyzed the main driving factors and reasons deeply, and then we put forward the BUREP strategy base on the unequal status between urban and rural environment. Finally, we proposed the framework of BUREP. This study may serve as a scientific reference regarding decision-making in coordinating urban and rural environmental protection and in constructing the new countryside of China.
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications.
Xiaoguang LiYing ZhaoBeidou XiXiaoguang MengBin GongRui LiXing PengHongliang Liu