Poly(3-hexylthiophene) (PBHT) was used in a solid-state dye-sensitized solar cell (S-DSC) with a broad- absorption metal-free organic dye sensitizer 1,2,4,5-benzenetetracarboxylic acid (BzTCA). Under full- sunlight irradiation (AM 1.5 G, 100 mW/cm2 ), an overall conversion efficiency of 3.21% was achieved, which represents one of the highest efficiencies reported in an S-DSC. Our results indicate that the P3HT polymer is a promising material as both a hole conductor and an assistant sensitizer in the fabrication of solid-state DSCs.
The wettability of solid surfaces has attracted extensive interest in both theoretical research and industrial applications. This paper reviews recent research progress in the fabrication and applications of the colloidal crystals with special wettability. Based on the modified equation of Wenzel and Cassie, the colloidal crystals with special wettability have been obtained by either application of the intrinsic rough structure or modification of the surface chemical composition. Some typical applications of colloidal crystals with special wettability have also been demonstrated.
WANG JingXiaZHANG YouZhuanZHAO TianYiSONG YanLinJIANG Lei