A new 1,8-naphthalimide derivative was prepared in which the C-4 position was substituted by pyridin-4-ol.This derivative shows good gelation property that can gelate most of polar solvents.As an achiral molecule,helical fibre morphology was observed when the compound gelated acetone solvent.When 0.5 eq of D-tartaric acid or L-tartaric acid was added to the gel,the helical morphology was changed from left-handed to right-handed structure.This result was further proved by circular dichroism measurement.FT-IR experiment showed the formation of intermolecular H-bond between the gelator and tartaric acid.The photophysical properties of gelator had no difference before and after addition of tartaric acid;whereas the lamellar structure was varied by addition of tartaric acid.
CAO XinHuaZHANG MingMingLIU KeYinMAO YueYuanLAN HaiChuangLIU BinYI Tao
Self-assembly of chiral amphiphiles with π-conjugated tectons into one-dimensional helical nanostructures offers great potential applications in the biological,physical,and material sciences.In this review,the recent development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons has been discussed on the basis of experimental exploration by elegantly utilizing cooperative noncovalent forces such as π-π stacking,hydrophobic interaction,hydrogen bond and electrostatic interaction,and the potential applications of these self-assembled helical nanostructures in chiral recognition,asymmetric catalysis,electrical conduction,switchable interfaces and soft template for the fabrication of one-dimensional hard materials are described by a representative example.Meanwhile,some scientific and technical challenges in the development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons are also presented.It is hoped that this review can summarize the strategies for self-assembling soft nanomaterials by using chiral amphiphiles with π-conjugated tectons,and also as a guideline for design functional nanomaterials for various potential applications.
Self-assembly of latex particles is of great importance for fabricating various functional colloidal crystals. In this paper, we review recent research on the self-assembly of latex particles for colloidal crystals, covering the assembly forces and various assembly approaches of latex particles, including self-assembly by gravity sedimentation, vertical deposition, physical confinement, electric field, and magnetic field. Furthermore, some simple methods for assembling latex particles such as spin coating, spray coating, and printing are also summarized.
The amphiphilic multiarm copolymers were synthesized through the modification of commercially available hyperbranched polyesters(Boltorn H40) with N-ε-carbobenzoxy-L-Lysine N-carboxyanhydride(ZLys-NCA).After being condensed with N-Boc-phenylalanine(Boc-^NPhe) and deprotected the Boc-groups in trifluoroacetic acid(TFA),the original terminal hydroxyl groups were transformed into the amino groups and then initiated the ring-opening polymerization of ZLys-NCA.The hydrophilic poly(L-lysine) was grafted to the surface of Boltorn H40 successfully after the protecting benzyl groups were removed by the HBr solution in glacial acetic acid(33 wt%).The resulting multiarm copolymers were characterized by the ^1H-NMR,GPC and FTIR.The arm length calculated by NMR and GPC analysis was about 3 and 13 lysine-units for H40-Phe-PLysl and H40-Phe-PLys2 respectively.Due to the amphiphilic molecular structure,they displayed ability to self-assemble into spherical micelles in aqueous solution with the average diameter in the range from 70 nm to 250 nm.The CMC of H40-Phe-PLysl and H40-Phe-PLys2 was 0.013 mg/mL and 0.028 mg/mL,respectively, indicating that H40-Phe-PLysl with shorter arm length is easier to self-assemble than H40-Phe-PLys2 with longer arm length.