The effect of compatibility on phase morphology and orientation of isotactic polypropylene (iPP) blends under shear stress was investigated via dynamic packing injection molding (DPIM). The compatibility of iPP blended with other polymers, namely, atactic polypropylene (aPP), octane-ethylene copolymer (POE), ethylene-propylene-diene rubber (EPDM) and poly(ethylene-co-vinyl acetate) (EVA), have first been studied using dynamic mechanical analysis (DMA). These blends were subjected to DPIM, which relies on the application of shear stress fields to the melt/solid interfaces during the packing stage by means of hydraulically actuated pistons. The phase morphology, orientation and mechanical properties of the injection-molded samples were characterized by SEM, 2D WAXS and Instron. For incompatible iPP/EVA blends, a much elongated and deformed EVA particles and a higher degree of iPP chain orientation were observed under the effect of shear. However, for compatible iPP/aPP blends, a less deformed and elongated aPP particles and less oriented iPP chains were deduced. It can be concluded that the compatibility between the components decreases the deformation and orientation in the polymer blends. This is most likely due to the hindering effect, resulting from the molecular entanglement and interaction in the compatible system.
The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.
The fractionated crystallization behavior of the minor dispersed HDPE phase in PS/POE/HDPE/SBS quaternary blends was investigated by differential scanning calorimetry (DSC).Interestingly,we found that the fractionated crystallization behavior of HDPE was molecular weight dependent.At a fixed composition,HDPE with lower molecular weight showed more obvious fractionated crystallization behavior than HDPE with higher molecular weight.This was ascribed to a finer dispersion of HDPE with lower molecular weight,a...
The hierarchical structure and interfacial morphology of injection-molded bars of polypropylene (PP) based blends and composites have been investigated in detail from the skin to the core. For preparation of injection-molded bars with high-level orientation and good interfacial adhesion, a dynamic packing injection molding technology was applied to exert oscillatory shear on the melts during solidification stage. Depending on incorporated component, interfacial adhesion and processing conditions, various oriented structure and morphology could be obtained. First, we will elucidate the epitaxial behavior between PP and high-density polyethylene occurring in practical molded processing. Then, the shear-induced transcrystalline structure will be the main focus for PP/fiber composites. At last, various oriented clay structures have been ascertained unambiguously in PP/organoclay nanocomposites along the thickness of molded bars.
In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.
In order to improve the tensile properties of poly(ethylene terephthalate)(PET), we used the direct esterification method to synthesize PET in a home-made facility, and a certain amount of ethylene glycol (EG), one of the two starting monomers, was substituted by glycerin (GE). Four PETs with different GE contents were prepared to investigate the effect of GE on the crystallization and tensile properties of the prepared copolyester. The results showed largely improved tensile properties and increased crystallization temperature due to the possible crosslinking structure in PET by using a small amount of GE.