针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像。实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 d B和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 d B和0.045;比基于三变量模型的剪切波去噪方法提高0.64 d B和0.025。