We fabricate slightly deformed fused-silica microspheres in which whispering gallery modes possess remarkably directional escape emission from the microsphere boundary. With efficient free-space excitation and collection, the lateral spatial distribution of whispering gallery modes with different azimuthal mode numbers, m, is directly observed through modal coupling and directional emission. Excellent agreement with theory is obtained.
A fiber taper can evanescently couple to whispering gallery modes (WGMs) in a planar silica microdisk for observing the optical properties of the microdisk cavity. It is revealed that WGMs have very high quality (Q) factors by controlling the air gap between the taper and the microdisk. The best coupling efficiency from the taper to the microdisk is as high as 98%, and can be continuously adjusted from the under-coupling, critical-coupling to over-coupling regimes. The influence of the laboratory circumstance such as surface contamination on the microdisk is also discussed. It is experimentally shown that the high-Q-factor (10^5) modes can be kept for a long period in a general laboratory circumstance.