A fiber optic 2-cholrophenol(2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris(2,2′-bipyridyl) ruthenium(II) chloride complexes(Ru(II)(byp)3Cl2) were immobilized in cellulose acetate(CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L(S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.
We prepared graphene oxide(GO) saturable absorber(SA) successfully through optical deposition method, which is a simple but effective approach to deposit various materials onto substrate under the effects of light, and investigated several factors that influence the optical deposition result of GO onto optical fiber end, including poly(methyl methacrylate)(PMMA) concentration, light intensity, light mode, and deposition time. The efficient optically deposited GO preserving its nonlinearity guaranteed by GO/PMMA composite formation was also demonstrated. The GO SA prepared by optical deposition shows superior saturable absorption property with modulation depth and nonsaturable loss of 6% and 40%, respectively.
A chemical system for facile and accurate detection of 2,4-dichlorophenol (DCP) via iron (Ⅱ) phthalocyanine (Fe(Ⅱ)Pc) catalyzed chromogenic reaction is reported for the first time. In this system, DCP could be oxidized by dioxygen with the catalysis of Fe(Ⅱ)Pc and then coupled with 4-aminoantipyrine (4-AAP) to generate pink antipyrilquinoneimine dye. Control experiments showed that the addition of ethanol could obviously enhance the catalytic activity of heterogeneous Fe(Ⅱ)Pc catalysts because of the partial dissolution of Fe(II)Pc nanocubes, which was confirmed by the SEM analysis. On the basis of the detection results of DCP in the range from 2×10^-5 to 9×10^-4 mol/L, we obtained a regression equation (A = 0.187 5 + 0.01 209C (R2=-0.995 6)) with the detection limit (3σ) of 3.26×10^-6 mol/L, which could be successfully used in detecting the real samples.
A novel fluorescent probe for H_2PO_4^- was designed and fabricated based on the carbon dots/Fe^(3+) composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe^(3+) composite was obtained by aqueous mixing of carbon dots and FeCl_3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe^(3+) cations, resulting in the low fluorescence intensity of the carbon dots/Fe^(3+) composite. On the other hand, H_2PO_4^- reduced the concentration of Fe^(3+) by chemical reaction and enhanced the fluorescence of the carbon dots/Fe^(3+) composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe^(3+) composite and the concentration of H_2PO_4^-, and a fine linearity(R2=0.997) was found in the range of H_2PO_4^- concentration of 0.4-12 m M.
Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the raw materials of citric acid(CA) and urea(UR), and expressed a unique green fluorescence with the optimal excitation wavelength of over 400 nm through adjusting the doping of N elements. It is demonstrated that CQDs can act as deliver media in plant and fluorescent probes for plant cell imaging through directly cultivated in the seedlings of melon and wheat, respectively. Based on the effects of the fluorescent CQDs on plants growth, we can further study the mechanisms of the ions transport in plants.