Ke-Zhong Wu~*,Xiao-Di Liu,Jian-Jun Zhang Key Laboratory of Inorganic Nano-materials of Hebei Province,Shijiazhuang 050024 Department of Chemistry and Material Science,Hebei Normal University,Shijiazhuang 050024
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.
A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters △G≠, △H≠ and △S≠ of activation at the peak temperature were also calculated.