In this paper, we use the stochastic Nagel-Schreckenberg (NaSch) model to investigate the influence of a special right-turning lane connecting two main roads on the capacity of a signalized road intersection. It is found that the magnitude of right-turning traffic flow and the linking position of the special right-turning lane can greatly influence the capacity of the signalized road intersection. The relation between traffic flow and entering probability for different distances between the entrance (exit) of the special right-turning lane and the road intersection is simulated and analysed. The corresponding spatiotemporal pattern and phase diagram on different sections of the main road are given under the condition of close proximity to the signalized road intersection, stop-and-go traffic occur and obstruct the intersection. On the contrary, unchanged flux is maintained as the distance exceeds a critical values. All the studies indicate that setting a special right-turning lane by choosing a suitable location near a signalized road intersection can relieve the load of current traffic on the main road and maintain traffic flow.
A new two-dimensional lattice hydrodynamic model considering the turning capability of cars is proposed. Based on this model, the stability condition for this new model is obtained by using linear stability analysis. Near the critical point, the modified KdV equation is deduced by using the nonlinear theory. The results of numerical simulation indicate that the critical point ac increases with the increase of the fraction p of northbound cars which continue to move along the positive y direction for c = 0.3, but decreases with the increase of p for c = 0.7. The results also indicate that the cars moving along only one direction (eastbound or northbound) are most stable.