In this paper the scheduling problem in downlink multiuser MIMO system is described as an optimization problem and particle swarm optimization (PSO) algorithm is introduced to address such problem. Two PSO scheduling methods with different objective functions applicable to different requirements on capacity and complexity are investigated. One is the capacity based PSO(C-PSO) scheduling method aiming at achieving the near optimal capacity; and the other is the lower bound of eigenvalue based PSO (LBE-PSO) scheduling method with the purpose of reducing computational complexity and at the same time achieving as large as possible capacity gain. Furthermore, convergence analysis of PSO from both the particle and the velocity aspects is also presented to derive the convergent condition, which is validated by several examples of different parameter values. Simulation results reveal that the C-PSO can obtain nearly the same capacity as the exhaustive search method with lower complexity, while the LBE-PSO provides a viable approach by striking a better tradeoff between capacity and computational complexity.
This article proposes a new space-time cooperative diversity scheme called full feedback-based cooperative diversity scheme (FFBCD). In contrast to the conventional adaptive space-time cooperative diversity schemes that utilize the feedback from only the destination node, the new scheme utilizes the feedback from both the destination node and the cooperation node. With the feedback from the destination node, the occasional successful reception of the destination node in the information distribution stage can be detected, thus avoiding unnecessary retransmissions in the information delivery stage. The feedback from the cooperation node indicates the receiving state of the cooperation node in the information distribution stage, and the source node and the cooperation node will not perform cooperative retransmission during the information delivery stage unless the cooperation node is received successfully in the information distribution stage. In this way the new scheme can reduce the number of transmission attempt and improve the channel utilization. The expressions of the average number of transmission attempt are given. Numerical approximations and simulation results both show that the new scheme performs better than the non-cooperative scheme and the conventional adaptive space-time cooperative diversity scheme.
SUN De-chun,YI Ke-chu,LI Xiao-hui State Key Laboratory of Integrated Service Networks,Xidian University,Xi’an 710071,china