Constructal theory is introduced into the molten steel yield maximization of a converter in this paper. For the specific total cost of materials, generalized constructal optimization of a converter steel-making process is performed. The optimal cost distribution of materials is obtained, and is also called as "generalized optimal construct". The effects of the hot metal composition contents, hot metal temperature, slag basicity and ratio of the waste steel price to the sinter ore price on the optimization results are analyzed.The results show that the molten steel yield after optimization is increased by 5.48% compared with that before optimization when sinter ore and waste steel are taken as the coolants, and the molten steel yield is increased by 6.84% when only the sinter ore is taken as the coolant. It means that taking sinter ore as coolant can improve the economic performance of the converter steelmaking process. Decreasing the contents of the silicon, phosphorus and manganese in the hot metal can increase the molten steel yield. The change of slag basicity affects the molten steel yield a little.
An optimization model for iron-making system covering sinter matching process to blast furnace process is established, in which the energy consumption, CO_2 emission and cost minimizations are taken as optimization objectives. Some key constraints are considered according to practical production experience in the modelling. The combination of linear programming(LP)and nonlinear programming(NLP) methods is applied. The optimal sinter matching scheme under given conditions and the optimization results for different objectives are obtained. Effects of sinter grade and basicity on all the optimal objectives and coke ratio in blast furnace process are analyzed, respectively. The results obtained indicate that compared with the initial values,the energy consumption/CO_2 emission of iron-making system decreases by 2.03% for objectives of energy consumption/CO_2 emission minimizations and 1.89% for the objective of cost minimization, the cost decreases by 17.88% and 18.13%, respectively.All the three criteria decrease with the increasing lump usage, coal powder injection, blast temperature, and decreasing coke ratio for the iron-making system.
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
Yu-liang WuZe-yi JiangXin-xin ZhangPeng WangXue-feng She