Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for
LI ZongjieLIU FeiSONG YongSONG LinglingTIAN QingJIA BingLI YonggeMA Jinzhu
Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions.Understanding the sources and mechanisms of groundwater recharge,the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin,Northwest China,is of importance for water resources management in this ecologically sensitive area.In this study,71 groundwater samples(mainly distributed at the Dongzhi Tableland and along the Malian River)and 8 surface water samples from the Malian River were collected,and analysis of the aquifer system and hydrological conditions,together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources,residence time and their associated recharge processes.Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley,while the source of the Malian River mainly comes from local precipitation.Groundwater of the Dongzhi Tableland is of a HCO3-Ca-Na type with low salinity.The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca^(2+),Mg^(2+)and Na+are the main water-rock interactions in the groundwater system of the Dongzhi Tableland.Theδ^(18)O(from-11.70‰to-8.52‰)andδ2H(from-86.15‰to-65.75‰)values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone,suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past(≤220 a).The corrected 14C ages of groundwater range from 3,000 to 25,000 a old,indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods.Groundwater flows deeper from the groundwater table and from the center to the east,south and west of the Dongzhi Tableland with estimated migration rate of 1.