2025年1月8日
星期三
|
欢迎来到贵州省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
国家教育部博士点基金(200802941009)
作品数:
1
被引量:39
H指数:1
相关作者:
张敏灵
更多>>
相关机构:
东南大学
更多>>
发文基金:
国家教育部博士点基金
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
相关作品
相关人物
相关机构
相关资助
相关领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
多标记
1篇
多标记学习
1篇
学习算法
1篇
图像
1篇
图像分类
1篇
懒惰
1篇
基因
1篇
基因组
1篇
基因组学
1篇
功能基因
1篇
功能基因组
1篇
功能基因组学
机构
1篇
东南大学
作者
1篇
张敏灵
传媒
1篇
计算机研究与...
年份
1篇
2012
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
一种新型多标记懒惰学习算法
被引量:39
2012年
在多标记学习框架下,每个样本由单个实例进行表示并同时对应于多个概念标记.已有的多标记懒惰学习算法并未充分考察样本多个标记之间的相关性,因此其泛化性能将会受到一定程度的不利影响.针对上述问题,提出一种新型多标记懒惰学习算法IMLLA.该算法首先找出测试样本在训练集中与各个概念类对应的近邻样本,然后基于近邻样本的多标记信息构造一个标记计数向量,并提交给已训练的线性分类器进行预测.由于IMLLA在对每个概念类进行预测时利用了蕴含于其他概念类中的信息,因而充分考察了样本多个标记之间的相关性.在人工数据集以及真实世界数据集上的实验表明,IMLLA算法的性能显著优于常用的多标记学习算法.
张敏灵
关键词:
多标记学习
功能基因组学
图像分类
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张