To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments. In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage.
After water stress at various levels and durations at different growth stages, rewatering could greatly stimulate the leaf area development of winter wheat. The results showed that the stimulation effect changed with water stress time, degree and duration. Rewatering under earlier stress had greater stimulation effect on leaf area than that under later stress. Higher stimulation effect was observed under severe water stress than that under moderate stress. Longer duration of stress resulted in low stimulation effect. In spite of the greater stimulation effect under severe and longer stress, the final leaf area in these situations was lower than that under moderate stress and shorter duration. Whenever the stress occurred, the stimulating effect was due to the increase of the leaf area of the tillers. Once the leaf on the main stem emerged during stress period, rewatering had no effect on its size, and consequently its leaf area. The stimulation of rewateirng on leaf area contributed to the final grain yield by 45% under moderate stress, and 67% under severe stress. Although the stimulation partly compensated for the loss during stress, the final leaf area and the grain yield could not reach the level without water stress.
LIU Xiao-ying, LUO Yuan-pei and SHI Yuan-chun( Institute of Resources and Environments , China Agricultural University, Beijing 100094
The dynamic relationship of dry matter accumulation and distribution between winter wheat root and shoot was studied under different soil water conditions. The dry matter accumulation in root was greatly influenced by water stress, so as to the final root weight of the treatment with 40% field moisture capacity(FMC) was less than 1/4 of that of the treatment with 80% FMC on average. Water stress during the 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stress during the jointing stage to the booting stage on shoot was greater than root. However, water stress during the tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of dry matter that distributed to root and shoot was almost the same after rewatering. Water recovery during the jointing stage to booting stage could promote R/S, but the increasing degree was related to the duration of water limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the filling stage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMC treatment was 20.93 and 126.09% higher than that of 60% FMC and 80% FMC treatments respectively at this period.