In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.
Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In the case of multiple tumors being present, the conventional imaging approaches may be ineffective to detect all the tumors clearly. In this paper, a progressive processing method is proposed for detecting more than one tumor. The method is divided into three stages: primary detection, refocusing and image optimization. To test the feasibility of the approach, a numerical breast model is developed based on the realistic magnetic resonance image (MRI). Two tumors are assumed embedded in different positions. Successful detection of a 3.6 mm-diameter tumor at a depth of 42 mm is achieved. The correct information of both tumors is shown in the reconstructed image, suggesting that the progressive processing method is promising for multi-tumor detection.
Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.