This paper studies the self-similar fractals with overlaps from an algorithmic point of view.A decidable problem is a question such that there is an algorithm to answer"yes"or"no"to the question for every possible input.For a classical class of self-similar sets{E b.d}b,d where E b.d=Sn i=1(E b,d/d+b i)with b=(b1,...,b n)∈Qn and d∈N∩[n,∞),we prove that the following problems on the class are decidable:To test if the Hausdorff dimension of a given self-similar set is equal to its similarity dimension,and to test if a given self-similar set satisfies the open set condition(or the strong separation condition).In fact,based on graph algorithm,there are polynomial time algorithms for the above decidable problem.
Given a sequence{bi}i=1^n and a ratio λ∈(0,1),let E=Ui=1^n(λE+bi)be a homogeneous self-similar set.In this paper,we study the existence and maximal length of arithmetic progressions in E.Our main idea is from the multiple β-expansions.