By measuring the expansion curves of a Nb bearing steel at different cooling rates by using Gleeble-3800 thermomechanical simulator, combining with metallographic analysis, different phase zones were determined. Also, precipitation behavior of Nb at different phase zones was investigated under ultra fast cooling conditions. The experimental results showed that adopting a proper deformation temperature, the ultra fast cooling process can restrain the precipitation of Nb at austenite phase zone. More quantities and smaller size precipitates of Nb can be found at the ferrite or bainite phase zone by controlling the ultra fast cooling ending temperature. With the increase of holding time at austenite, ferrite and bainite phase zones respectively, the volume fraction of precipitation, density, and average size of precipitates will increase obviously. With the decrease of early ultra fast cooling ending temperature, the density of Nb precipitates first increase(at ferrite phase zone) and then decrease(at bainite phase zone), the volume fraction of Nb precipitation decreases and precipitates can be refined. The optimal early ultra fast cooling ending temperature is located at ferrite phase zone. The combination of high rolling temperature with early ultra fast cooling technology opens the way for new cooling schedules and makes the production of high strength steels easier and cheaper by making full use of Nb precipitation strengthening effect.
Continuous annealing simulation tests were conducted by using a continuous annealing thermomechanical simulator. Holding times of 5, 60, 180, and 480 seconds for an intercritical annealing temperature of 820℃ were adopted to investigate the evolution of the mierostructure and mechanical properties of ferrite-bainite dual-phase steel. The ferrite-bainite dual-phase steel was characterized by high strength and low yield ratio due to the presence of the constituents (polygonal ferrite, bainite, martensite and retained austenite) of the steel microstructure. Specimen 3 exhibits the highest value of A50 (7.67%) and a product of Rm × A50 (10453MPa%) after a 180s holding. This is likely attributed to the presence of a C-enriched retained anstenite in the microstructure. And the effect of martensite islands and carbide precipitate is thought to be able to contribute in strengthening the present steel. It is expected that equilibrium of anstenite fraction would be reached for reasonable intercritical holding period, regardless of the heating temperature. The results suggest that long increasing holding times may not be needed because the major phase of the microstructure does not change very significantly. It is favorable for industrial production of DP steels to shorten holding times. Key words: ferrite-bainite dual-phase steel; holding time; martensite islands; mechanical properties