Chaotic mixing is regarded as an effective method to improve the mixing effect in the laminar stirred tank.To generate chaos in flow field in stirred tank,many efforts including aperiodic movement,asystematic installation impeller,etc.,were made to save mixing time and energy consumption.The computational fluid dynamics of chaotic flow field and the hyperchaotic controlling method as well as macro-instability were reviewed.Multiple flow field coupling is important in the turbulent mixing region of stirred tank.The development trends of flow field coupling and hyperchaotic controlling in chaotic mixing were prospected in energy saving operation.
Macro-instability(MI)is an important natural phenomenon affecting the mixing performance in stirred tank significantly,which results from movement and evolution of large eddies.Factors associated with MI frequency in mixing operation and energy dissipation related to MI were reviewed.Flow pattern in turbulent regime contains many coherent structures,which have much energy vortices and may result in flow field MI.Adjustment of coherent structure and controlling MI may contribute to energy saving and good mixing performance.Controlling methods for MI was prospected.
Water source heat pump is a new kind of energy saving process.One of the most common problems for water source heat pump system is the corrosion of the copper in heat exchanger.The quality of water is the key factor.The river water collected in six different places of the Yangtze River and Jialing River in Chongqing were analyzed.Various parameters(pH,coexisted ions,and hardness value)were investigated.It showed that the Yangtze River and Jialing River water was suitable for developing water source heat pump technology.Further more,aimed at the temperature and pH of the raw water's variation range in a year,the corrosion behavior of copper material was studied by controlling the water environmental condition.Corrosion rate of copper is accelerated at high temperature and lower pH value.