In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods.
Power spectrum estimation is to use the limited length of data to estimate the power spectrum of the signal. In this paper, we study the recently proposed tunable high-resolution estimator(THREE), which is based on the best approximation to a given spectrum, with respect to different notions of distance between power spectral densities. We propose and demonstrate a different distance for the optimization part to estimate the multivariate spectrum. Its effectiveness is tested through Matlab simulation. Simulation shows that our approach constitutes a valid estimation procedure. And we also demonstrate the superiority of the method, which is more reliable and effective compared with the standard multivariate identification techniques.