The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions.
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.
A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant effect on the combustion of methanol-diesel emulsified fuel. In this paper, the methanol-diesel emulsified fuel uses diesel as the continuous phase and methanol as the dispersed phase. The Sauter mean diameter of the dispersed phase of methanol-diesel emulsified fuel was characterized with microphotography and arithmetic method. The experimental result showed that the Sauter mean diameter of the dispersed phase, which was decreased with the augmentation of the high gravity factor, liquid flow rate and emulsifier dosage, was inversely proportional to the methanol content. The Sauter mean diameter of the dispersed phase can be controlled and adjusted in the range of 12—40 μm through the change of operating conditions. The correlative expressions of the Sauter mean diameter of emulsified fuel were obtained and the calculated values agreed well with the experimental values.
Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.