The Internet of Things emphasizes the concept of objects connected with each other, which includes all kinds of wireless sensor networks. An important issue is to reduce the energy consumption in the sensor networks since sensor nodes always have energy constraints. Deployment of thousands of wireless sensors in an appropriate pattern will simultaneously satisfy the application requirements and reduce the sensor network energy consumption. This article deployed a number of sensor nodes to record temperature data. The data was then used to predict the temperatures of some of the sensor node using linear programming. The predictions were able to reduce the node sampling rate and to optimize the node deployment to reduce the sensor energy consumption. This method can compensate for the temporarily disabled nodes. The main objective is to design the objective function and determine the constraint condition for the linear programming. The result based on real experiments shows that this method successfully predicts the values of unknown sensor nodes and optimizes the node deployment. The sensor network energy consumption is also reduced by the optimized node deployment.
A hybrid collaborative filtering algorithm based on the user preferences and item features is proposed.A thorough investigation of Collaborative Filtering (CF) techniques preceded the development of this algorithm.The proposed algorithm improved the user-item similarity approach by extracting the item feature and applying various item features' weight to the item to confirm different item features.User preferences for different item features were obtained by employing user evaluations of the items.It is expected that providing better recommendations according to preferences and features would improve the accuracy and efficiency of recommendations and also make it easier to deal with the data sparsity.In addition,it is expected that the potential semantics of the user evaluation model would be revealed.This would explain the recommendation results and increase accuracy.A portion of the MovieLens database was used to conduct a comparative experiment among the proposed algorithms,i.e.,the collaborative filtering algorithm based on the item and the collaborative filtering algorithm based on the item feature.The Mean Absolute Error (MAE) was utilized to conduct performance testing.The experimental results show that employing the proposed personalized recommendation algorithm based on the preference-feature would significantly improve the accuracy of evaluation predictions compared to two previous approaches.