宁波市自然科学基金(2011A610193)
- 作品数:3 被引量:18H指数:2
- 相关作者:郭立君史忠植刘曦赵杰煜张媛媛更多>>
- 相关机构:宁波大学中国科学院中国科学院研究生院更多>>
- 发文基金:国家自然科学基金宁波市自然科学基金浙江省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于改进局部特征分布的图像分类方法被引量:4
- 2011年
- 提出一种概率签名的图像分布描述及对应的图像分类算法.算法首先通过高斯混合模型建立图像局部特征分布,然后以混合模型中各个模式的均值为聚类中心,以图像中满足约束条件的局部特征对相应模式的后验概率之和为聚类大小来形成初始的概率签名,最后执行一个压缩过程确定最终的概率签名特征,并通过训练基于Earth Mover's Distance(EMD)核的SVM分类器完成图像分类.概率签名允许一个局部特征对多个聚类做出反映,可以编码更多判别信息以及从视觉感知上捕捉更多的相似性.通过与其它图像分类方法在场景识别和对象分类两项任务上的对比实验,验证了文中提出的分类方法的有效性.
- 郭立君刘曦赵杰煜史忠植
- 关键词:图像分类
- 一种基于非参数贝叶斯模型的聚类算法被引量:2
- 2013年
- 鉴于聚类分析是机器学习和数据挖掘领域的一项重要技术,并且与监督学习不同的是聚类分析中没有类别或标签的指导信息,所以如何选择合适的聚类个数(即模型选择)一直是聚类分析中的难点.由此提出了一种基于Dirichlet过程混合模型的聚类算法,并用collapsed Gibbs采样算法对混合模型的参数进行估计.新算法基于非参数贝叶斯模型的框架,能够在不断的采样过程中优化模型参数并形成合适的聚类个数.在人工合成数据集和真实数据集上的聚类实验结果表明:基于Dirichlet过程混合模型的聚类算法不但能够自动确定聚类个数,而且具有较强灵活性和鲁棒性.
- 张媛媛
- 关键词:聚类分析GIBBS采样
- 结合运动信息与表观特征的行人检测方法被引量:12
- 2012年
- 提出一种结合运动信息与表观特征的行人检测方法.在对通过表观检测子获得的候选检测窗口执行分割验证的框架中,将运动信息融入到基于图像序列的对象分割算法中,通过获取更准确的分割结果来提高对候选检测窗口的检测准确率.该方法利用运动信息更新运动对象的前景/背景分布模型,将颜色信息间接地融入行人检测中,并通过形状特征表现出来,与行人表观检测子形成互补的特性,获得更好的检测结果.上述结论在CAVIAR视频以及行人检测视频中得到了实验验证.
- 郭立君刘曦赵杰煜史忠植
- 关键词:行人检测形状先验运动信息图割