A subgroup H of a finite group G is said to have the semi-cover-avoiding property in G if there is a chief series of G such that H covers or avoids every chief factor of the series. In this paper, some new results are obtained based on the assumption that some subgroups have the semi-cover-avoiding property in the group.
A subgroup H of a finite group G is called semipermutable if it is permutable with every subgroup K of G with (|H| |K|) = 1, and s-semipermutable if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. In this paper, we investigate the influence of s-semipermutablity of some subgroups of prime power order of a finite group on its supersolvablility.
群 G 的一个子群 H 称为在 G 中具有半覆盖远离性,如果存在 G 的一个主群列1=G_0< G_1<…<G_1=G,使得对每一 i=1,…,l 或者 H 覆盖 G_j/G_(j-1)或者 H 远离 G_j/G_(j-1).本文证明了予群的半覆盖远离性是子群 C-正规性和子群的覆盖远离性之推广.进一步应用极大子群和 Sylow 子群给出了有限群为可解群的一些特征.
Alperin and Broug have given the p-subpairs in a finite group, and proved that there is a Sylow theorem for p-subpairs. For a π-separable group with π-Hall subgroup nilpotent, we prove that there is a π-Sylow theorem for π-subpairs. Note that our π-subpairs are different from what Robinson and Staszewski gave.