This paper is concerned with a p-Laplacian elliptic problem with critical Sobolev-Hardy exponent and Hardy term. By variational methods and genus theory, we guarantee that this problem has at least one positive solution and admits many solutions with negative energy under sufficient conditions.
Xie Huazhao (College of Math. and Statistics, Huazhong Normal University, Wuhan 430079) Li Suli (Math. Staff Office, The first Aeronautic College of The Air Force, Xinyang 464000, Henan)
In this article, the authors study the structure of the solutions for the EuierPoisson equations in a bounded domain of Rn with the given angular velocity and n is an odd number. For a ball domain and a constant angular velocity, both existence and nonexistence theorem are obtained depending on the adiabatic gas constant 7. In addition, they obtain the monotonicity of the radius of the star with both angular velocity and center density. They also prove that the radius of a rotating spherically symmetric star, with given constant angular velocity and constant entropy, is uniformly bounded independent of the central density. This is different to the case of the non-rotating star.