We suggest a scheme of electron acceleration by use of two tightly focused ultra-short intense laser pulses at a IOOTW level. Electroas obtain a preliminary acceleration with a small angular spread by the longitudinal ponderomotive force of the first pulse. They are then injected and further accelerated to hundreds of MeV by the second laser pulse.
The dependence of emission direction of fast electrons on the laser intensity has been investigated. The experimental results show that, at nonrelativistic laser intensities, the emission of fast electrons is mainly in the polarization plane. With the increase of the laser intensity, fast electrons emit towards the laser propagation direction from laser polarization direction. At relativistic laser intensities, fast electrons move away from the laser polarization plane, closely to the reflection direction of the incident laser beam.