Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury,but this approach is limited by their poor viability after transplantation.The present study was to investigate whether trimetazidine (TMZ) could improve survival of MSCs in an ex vitro model of hypoxia,as well as survival,differentiation,and subsequent activities of transplanted MSCs in rat hearts with acute myocardial infarction (AMI).MSCs at passage 3 were examined for their viability and apoptosis under a transmission electron microscope,and by using flow cytometry following culture in serumfree medium and exposure to hypoxia (5% CO2,95% N2) for 12 h with or without TMZ.Thirty Wistar rats were divided into 3 groups (n=10 each group),including groupⅠ(AMI control),groupⅡ (MSCs transplantation alone),and group Ⅲ (TMZ+MSCs).Rat MSCs (4×107) were injected into peri-infarct myocardium (MSCs group and TMZ+MSCs group) 30 min after coronary artery ligation.The rats in TMZ+MSCs group were additionally fed on TMZ (2.08 mg?kg-1?day-1) from day 3 before AMI to day 28 after AMI.Cardiac structure and function were assessed by echocardiography at 28th day after transplantation.Blood samples were collected before the start of TMZ therapy (baseline),and 24 and 48 h after AMI,and inflammatory cytokines (CRP,TNF-α) were measured.Then the sur-vival and differentiation of transplanted cells in vivo were detected by immunofluorescent staining.The cellular apoptosis in the peri-infarct region was detected by using TUNEL assay.Furthermore,apoptosis-related proteins (Bcl-2,Bax) within the post-infarcted myocardium were detected by using Western blotting.In hypoxic culture,the TMZ-treated MSCs displayed a two-fold decrease in apoptosis under serumfree medium and hypoxia environment.In vivo,cardiac infarct size was significantly reduced,and cardiac function significantly improved in MSCs and TMZ+MSCs groups as compared with those in the AMI control group.Combined treatment of TMZ with MSCs implantation demonstrated furth