To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.
A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the reaction and operation abilities of drivers about traffic signals.By comparison experiment with that EEG signal based,multivariate statistical analysis and fusion identification based on BP neural network(BPNN) results show that the experimental procedure is simple and practical,and the proposed method can reveal the correlation between fatigue feature parameters and fatigue degree in theory,and also can achieve accurate and reliable quantification of fatigue degree,especially under the associated action of multiple fatigue feature parameters.