Many experiments have proven that with increasing silt and gas(out-of-phase media)content in water,the cavitation characteristics change and the cavitation pressure increases.Currently,many large reservoirs in China are polluted by total phosphorus(TP)and other chemical contaminants because of the use of phosphate fertilizer runoff from agriculture.However,research regarding how chemical pollutants(in the form of out-of-phase media)affect the cavitation pressure characteristics of water is sparse.In this paper,the Goupitan Hydropower Station,the largest hydropower reservoir on the Wujiang River,which is heavily polluted by TP,is taken as an example to evaluate the effects of chemical pollution on water cavitation pressure characteristics.In this study,the cavitation pressure characteristics of polluted and clean water are compared.The results show that the cavitation pressure of water polluted by chemicals is larger than that of clean water.In a hydraulic power generation system,cavitation and cavitation erosion are likely to occur earlier in runners when the fluid is polluted.These results are of great importance to further studies of cavitation theory and can directly influence the arrangement of turbines in practical engineering.
Previously it was assumed that the pressure within the cavity or on the cavity surface remained constant and the vapor pressure of clean water at 20°C and 0 m altitude was utilized as the computational boundary for cavitating flows in hydraulic turbomachinery. Cavitation was confused with vaporization, and the effect of water quality on cavitation pressure characteristics was not taken into account. In recent years, lots of experiments of cavitation pressure characteristics of different water qualities including different sand concentrations of sand water and different altitudes of clean water have been performed by the authors, and the important influences of water quality on cavitation pressure characteristic have been validated. Thus the water quality should be involved in the cavitating flows computation. In the present paper, the effect of water quality on the cavitation pressure characteristic is analyzed and the computational method and theory of cavitating flows for hydraulic turbomachinery that considers the influence of water quality are proposed. The theory is suitable for both the potential flow method and the two-phase flow method for cavitating flows simulation. Finally, the validation results for cavitating flows in a hydraulic tur- bine indicate the significant influences of water quality on the cavitating flow performance.
WANG Lei1,2 & CHANG JinShi2 1 Huadian Electric Power Research Institute, Hangzhou 310030, China