To improve the comprehensive mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy, different amount of Ce-rich rare earth (RE) was added to the alloy, and the effect of RE addition on the microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb alloy was investigated by means of Brinell hardness measurement, scanning electron microscopy (SEM), energy dispersive spectroscope (EDS) and X-ray diffraction (XRD). The results show that an appropriate amount of Ce-rich rare earth addition can make the AI4Ce phase particles and CeSb phase disperse more evenly in the alloy. These phases refine the alloy's matrix and make the secondary phases [τ-Mg32(AI,Zn)49 phase and φ-Al2MgsZn2 phase] finer and more dispersive, therefore significantly improve the mechanical properties of the Mg-10Zn-5AI-0,1Sb alloy. When the RE addition is 1.0 wt.%, the tensile strengths of the alloy both at room temperature and 150℃ reach the maximum values while the impact toughness is slightly lower than that of the matrix alloy. The hardness increases with the increase of RE addition.
You ZhiyongZhang ZhaoguangZhang JinshanWei Yinghui
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase.
Jinshan Zhang Jidong Xu Weili Cheng Changjiu Chen Jingjing Kang
Mg97−xZn1Y2Alx alloys with long-period stacking ordered(LPSO)structures were prepared by conventional casting method.The optical microscopy(OM),X-ray diffraction(XRD)and the scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS)were used to analyze the microstructure of the alloys with different compositions.Immersion test and electrochemical measurement were used to evaluate the corrosion behavior of the alloys at room temperature,and the corrosive medium is 3.5%NaCl aqueous solution.The results showed that,with the increasing aluminum(Al)addition,exceptα-Mg and LPSO phases,new phases also emerged on the grain boundaries.At the same time,the zigzag part of LPSO phases disappeared,and the boundaries between LPSO phases andα-Mg became smooth.Furthermore,the addition of Al to Mg-Zn-Y alloys could hinder the activity of cathodic hydrogen evolution reaction and improve the uniformity and compactness of the protective surface film,thus,enhanced the corrosion resistance of Mg-Zn-Y alloys.
Dan WangJinshan ZhangJidong XuZilong ZhaoWeili ChengChunxiang Xu
The effects of the solution and aging treatment on microstructures and mechanical properties of the Mg-10Zn-5A1-0.1Sb-XCu cast magnesium alloys were investigated by brinell hardness measurement, scanning electron microscopy (SEM), energy spectrum analyzing apparatus and X-ray diffraction (XRD). The experimental results show that the strip-like t-Mg32 (A1, Zn)49 phase is shown at the grain boundaries and Mg2Cu phase become smaller, even granular after solution treatment at 350 ~C for 24 h. By ageing treatment at 180 ~C, the ternary strengthening phase (r phase) precipitates gradually at or around grain boundary. With increasing aging time, the micro-hardness improves obviously and up to the maximum (105.9 HV) at aging time of 36 h. In addition, the tensile-strengths at room temperature and at an elevated temperature respectively reach 228 MPa and 176 MPa, which is increased by 20% and 10%, respectively.
Mg70.8Zn28Nd1.2(mole fraction) alloy containing icosahedral quasicrystal phase (I-phase) was prepared under conventional metal casting conditions. The microstructure, phase constitution and phase structure of the alloy were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). The resuits showed that the spherical phase in Mg70.8Zn28Nd1.2 alloy was a simple icosahedral quasicrystal with stoichiometric composition of Mg40Zn55Nd5 and quasi-lattice of 0.525 nm. In this research, the as-cast microstructure of Mg70.8Zn28Nd1.2 alloy mainly consisted of Mg40Zn55Nd5 icosahedral quasicrystal phase and Mg7Zn3 columnar crystal matrix. In the growing process of Mg40Zn55Nd5 icosahedral quasicrystal phase, the growth morphology mainly depended on interface energy, adsorption effect of Nd and cooling rate.
Effects of spherical quasi-crystal contained in Mg-Zn-Y-Mn master alloy on the microstructure and as-cast mechanical properties of ZA155 high zinc magnesium alloy have been investigated by means of optical microscopy,XRD,SEM,EDS,tensile test,impact test and hardness test.Experimental results show that the addition of spherical quasi-crystal contained in the Mg-Zn-Y-Mn master alloy into the ZA155 high zinc magnesium alloy resulted in grain refinement of the matrix,changing the morphologies of φ-Al2Mg5Zn2 phase and τ-Mg32(Al,Zn)49 phase from continuous net-like structures to discontinuous strip-like structure and blocky one,respectively.In the present research,the best comprehensive mechanical properties of reinforced ZA155 high zinc magnesium alloy has been obtained when 5.0wt% spherical quasi-crystal was introduced from the Mg-Zn-Y-Mn master alloy into the target alloy system.In such case,the room-temperature tensile strength reached 207 MPa,about 23% higher than that of the base alloy;the impact toughness peaked at 5.5 J/cm2,about 40% higher than that of the base alloy;and the elevated-temperature tensile strength reached 203 MPa,indicating improved heat resistance.
In view of high strength and poor impact toughness of the high-zinc magnesium alloys,the method of micro-alloying was adopted to improve the impact-toughness of Mg-10Zn-5Al high zinc magnesium alloys by adjusting the addition of Sb.The results show that:the dystectic Mg3Sb2 particles formed by Sb and Mg are distributed in the front of dendrite,restrain the growth of the secondary phase and then change the morphology of the secondary phases,which refines the matrix in some extent and improves the impact-toughness of the alloy significantly.But with further increase of Sb addition,Mg3Sb2 particles congregate and form needle-like Mg3Sb2 phase,which dissevers the matrix and leads to the reduction of the strength and impact-toughness of the alloys.Hence,the mechanical prosperities of ZA105 high zinc magnesium alloy are significantly improved with appropriate Sb addition,which provides a new way to extend the application fields of high zinc magnesium alloy.
To improve the strength, hardness and heat resistance of Mg-6Al-lZn (AZ61) alloy, the effects of Pr addition on the as-cast microstructure and mechanical properties of AZ61 alloy were investigated at room and elevated temperatures by means of Brinell hardness measurement, optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD) and DNS100 electronic universal testing machine. The results show that the microstructures of Pr-containing AZ61 alloys were refined, with primary,β-MglTAI12 phase distributed homogeneously. When the addition of Pr is up to 1.2wt.%, theβ phase becomes finer, and new needle-like or short-rod shaped AI11Pr3 phase and blocky AIPr phase appear. As a result, optimal tensile properties are obtained. However, greater than 1.2wt.% Pr addition leads to poorer mechanical properties due to the aggregation of the needle-like phase and large size of grains. The present research findings provide a new way for strengthening of magnesium alloys at room and elevated temperatures, and a method of producing thermally-stable AZ61 magnesium alloy.
In the present research, the Sb-alloying method was adopted, and the grain re finement and tensile properties of as-cast Mg-10Zn-5Al alloys with varying Sb addition were investigated.The results showed that with the Sb addition, a new phase (Mg3Sb2) of high melting point forms in the alloy beside the α-Mg matrix, τ-Mg32(Al, Zn)49 phase and φ-Al2Mg5Zn2 phase.With an appropriate amount of Sb addition, the morphologies of the secondary phases and the matrix are changed and the grains are refined.When Sb addition is 0.6wt.%, both ambient and high temperature tensile strengths of the alloy reach their maximum.The hardness of the alloy increases with the increasing of Sb addition.With proper addition of Sb, the tensile failure mode of the alloy changes from cleavage fracture to quasi-cleavage fracture, showing good enhancement effect.
Zhang Zhaoguang Zhang Jinshan Liu Yali Wang Xing Zhou Cuilan