The geometry of Teichmuller metric in an asymptotic Teichmuller space is studled in this article. First, a binary infinitesimal form of Teichmuller metric on AT(X) is proved. Then, the notion of angles between two geodesic curves in the asymptotic Teichmuller space AT(X) is introduced. The existence of such angles is proved and the explicit formula is obtained. As an application, a sufficient condition for non-uniqueness geodesics in AT(X) is obtained.
The eventually distance minimizing ray(EDM ray) in moduli spaces of the Riemann surfaces of analytic finite type with 3 g + n-3 〉 0 is studied, which was introduced by Farb and Masur [5]. The asymptotic distance of EDM rays in a moduli space and the distance of end points of EDM rays in the boundary of the moduli space in the augmented moduli space are discussed in this article. A relation between the asymptotic distance of EDM rays and the distance of their end points is established. It is proved also that the distance of end points of two EDM rays is equal to that of end points of two Strebel rays in the Teichmu¨ller space of a covering Riemann surface which are leftings of some representatives of the EDM rays. Meanwhile, simpler proofs for some known results are given.
Fei SONGYi QIGuangming HULMIBSchool of Mathematics and Systems ScienceBeihang University
Abstract The non-uniqueness on geodesics and geodesic disks in the universal asymptotic Teichmfiller space AT(D) are studied in this paper. It is proved that if # is asymptotically extremal in [[#]] with h (μ) 〈 h* (μ) for some point ζ∈D, then there exist infinitely many geodesic segments joining [[0]] and [[μ]], and infinitely many holomorphic geodesic disks containing [[0]] and [μ]] in AT(D).
The purpose of this paper is to give a relatively elementary and direct proof of the Delta Inequality, which plays a very important role in the study of the extremal problem of quasiconformal mappings.
It is known that every finitely unbranched holomorphic covering π:S→S of a compact Riemann surface S with genus g≥2 induces an isometric embedding Φπ:Teich(S)→Teich(S).By the mutual relations between Strebel rays in Teich(S)and their embeddings in Teich(S),we show that the 1 st-strata space of the augmented Teichmüller space Teich(S)can be embedded in the augmented Teichmüller space Teich(S)isometrically.Furthermore,we show that Φπ induces an isometric embedding from the set Teich(S)B(∞)consisting of Busemann points in the horofunction boundary of Teich(S)into Teich(S)B(∞)with the detour metric.