Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Kortewegde-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.
In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics around vans are obtained in three cases:a single van,two vans side-by-side and two vans one after another running into the tunnel,respectively.Through a comparison with the results of the wind tunnel experiment,the transient simulation method is verified.The results show that,when a van runs into the tunnel,the aerodynamic drag coefficient increases near the tunnel entrance,and after entering the tunnel,the side force is generated,pointing to the tunnel wall nearer to the van.When two vans run into the tunnel side-by-side,their drag coefficients increase by 50%,and the side force varies sharply with directions changing twice near the tunnel entrance.When two vans run into tunnel one after another,the aerodynamic characteristics around the van in the front is similar to that of a single van,but the aerodynamic forces on the van behind do not have obvious change.Among the three cases,the aerodynamic forces have a sharp change when two vans run side-by-side,so driving side-by-side into a tunnel should be avoided for safety.
The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.
TAO Li-liDU Guang-shengLIU Li-pingLIU Yong-huiSHAO Zhu-feng
Based on the pioneer work of Konishi et al, a new control method is presented to suppress the traffic congestion in the coupled map (CM) car-following model under an open boundary. A control signal concluding the velocity differences of the two vehicles in front is put forward. The condition under which the traffic jam can be contained is analyzed. The results axe compared with that presented by Konishi et al [Phys. Rev. 1999 E 60 4000-4007]. The simulation results show that the temporal behavior obtained by our method is better than that by the Konishi's et al. method, although both the methods could suppress the traffic jam. The simulation results are consistent with the theoretical analysis.
A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg-Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential. The modified Korteweg- de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink antikink solution is also obtained. The relation between the TDGL equation and the mKdV equation is shown. The simulation result is consistent with the nonlinear analytical result.