利用热重分析仪与气相色谱/质谱联用仪(TG-GC/MS)对木质素进行了动态升温热裂解研究。利用傅里叶变换红外光谱仪分析木质素微观结构,得到不同升温速率下的热重曲线,研究表明,木质素高温热裂解可以分为3个阶段,分别为干燥失水阶段、挥发分析出阶段和炭化阶段;随着升温速率的增加,各个阶段的最大失重率所对应的温度均向高温侧轻微移动,并且失重程度也随之增加;升温速率对木质素热裂解挥发分析出阶段机理模型的选择没有影响,其热裂解反应机理是一级反应控制机理,木质素热裂解挥发分析出阶段在不同升温速率下的表观活化能为54~63 k J·mol-1;对TG-GC/MS的联用提出了新的见解,设计加装了空气驱动阀,获得了主要热裂解气体产物CO,CO2,CH4和H2在不同温度下的析出规律。
B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption,and then Mulliken population changes were analyzed.The results show that the absorption of tar model compound radical and CaO is an exothermic reaction.Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O.The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%,10.5% and 15.5% in the case of a hydrogen atom removed,and those are 15.7%,14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO.Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.
The pyrolysis of 5-HMF was investigated using density functional theory methods at B3LYP/6-31 G++(d, p) level. Two possible pyrolytic pathways were proposed and full optimization of the energy gradient for the structures of reactants, products, intermediates and transition states of various reactions was implemented. The standard kinetic parameters in each reaction pathway were calculated and the formation and evolution mechanism of main pyrolysis products were analyzed. Bond dissociation energies calculation results show that the bond dissociation energy of CH_3—OH of 5-HMF is the lowest and the order of all kinds of bond dissociation energy is CH_3—OH