The minimum-energy configurations and energetic properties of the ArN-CO2 (N=1-19) van der Waals clusters were investigated by a simulated annealing algorithm. A newly developed Ar-CO2 potential energy surface together with the Aziz Ar-Ar interaction potential was employed to construct the high dimensional potential functions by pairwise additive approximation. The global minimal conformations were optimized by sampling the glassy phase space with a circumspectively formulated annealing schedule. Unlike the lighter agg-CO2 clusters, the size-dependent structural and energetic characteristics of ArN-CO2 exhibit a different behavior. The dramatically variations with number of solvent were found for small clusters. After the completion of the first solvation shell at N=17, the clusters were evolved more smoothly.
New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.